Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution.
نویسندگان
چکیده
PREMISE OF THE STUDY The opuntias (nopales, prickly pears) are not only culturally, ecologically, economically, and medicinally important, but are renowned for their taxonomic difficulty due to interspecific hybridization, polyploidy, and morphological variability. Evolutionary relationships in these stem succulents have been insufficiently studied; thus, delimitation of Opuntia s.s. and major subclades, as well as the biogeographic history of this enigmatic group, remain unresolved. METHODS We sequenced the plastid intergenic spacers atpB-rbcL, ndhF-rpl32, psbJ-petA, and trnL-trnF, the plastid genes matK and ycf1, the nuclear gene ppc, and ITS to reconstruct the phylogeny of tribe Opuntieae, including Opuntia s.s. We used phylogenetic hypotheses to infer the biogeographic history, divergence times, and potential reticulate evolution of Opuntieae. KEY RESULTS Within Opuntieae, a clade of Tacinga, Opuntia lilae, Brasiliopuntia, and O. schickendantzii is sister to a well-supported Opuntia s.s., which includes Nopalea. Opuntia s.s. originated in southwestern South America (SA) and then expanded to the Central Andean Valleys and the desert region of western North America (NA). Two major clades evolved in NA, which subsequently diversified into eight subclades. These expanded north to Canada and south to Central America and the Caribbean, eventually returning back to SA primarily via allopolyploid taxa. Dating approaches suggest that most of the major subclades in Opuntia s.s. originated during the Pliocene. CONCLUSIONS Opuntia s.s. is a well-supported clade that includes Nopalea. The clade originated in southwestern SA, but the NA radiation was the most extensive, resulting in broad morphological diversity and frequent species formation through reticulate evolution and polyploidy.
منابع مشابه
Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex
Ploidy has been well studied and used extensively in the genus Opuntia to determine species boundaries, detect evidence of hybridization, and infer evolutionary patterns. We carried out chromosome counts for all members of the Humifusa clade to ascertain whether geographic patterns are associated with differences in ploidy. We then related chromosomal data to observed morphological variability,...
متن کاملMolecular Phylogeny of the Polystichoid Ferns in Asia Based on rbcL Sequences
Polystichum has often been treated as a sub-cosmopolitan genus of 180-230 species (i.e., Polystichum s.l.), but several segregate genera, such as Cyrtogonellum, Cyrtomidictyum, Cyrtomium, Phanerophlebia, and Sorolepidium, have been recognized in various treatments. Together, these genera constitute the polystichoid ferns. We used a data set of 47 species of the polystichoid ferns and three outg...
متن کاملMonophyly, divergence times, and evolution of host plant use inferred from a revised phylogeny of the Drosophila repleta species group.
We present a revised molecular phylogeny of the Drosophila repleta group including 62 repleta group taxa and nine outgroup species based on four mitochondrial and six nuclear DNA sequence fragments. With ca. 100 species endemic to the New World, the repleta species group represents one of the major species radiations in the genus Drosophila. Most repleta group species are associated with cacti ...
متن کاملThe origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence.
Opuntia ficus-indica is a long-domesticated cactus crop that is important in agricultural economies throughout arid and semiarid parts of the world. The biogeographic and evolutionary origins of this species have been obscured through ancient and widespread cultivation and naturalization. The origin of O. ficus-indica is investigated through the use of Bayesian phylogenetic analyses of nrITS DN...
متن کاملBasal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form.
The cacti are well-known desert plants, widely recognized by their specialized growth form and essentially leafless condition. Pereskia, a group of 17 species with regular leaf development and function, is generally viewed as representing the "ancestral cactus," although its placement within Cactaceae has remained uncertain. Here we present a new hypothesis of phylogenetic relationships at the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2012